长沙星聚建材科技有限公司

documentation技术文档

您当前所在位置: 主页 > 技术文档 > 其他技术文章

桥梁抗裂密实剂

发布日期:2021-05-11 08:39  浏览次数:

     

                                                                                              
桥梁改建可以减少主要开发商的初期投资成本(包括拆除成本,土建成本等),缩短工期,体现更高的经济价值。目前,桥梁加固设计与计算的研究还相对滞后。在某些方面,甚至无法使用公认的算法,这使设计人员难以上手。除了扎实的专业知识,桥梁加固设计人员还应该具有丰富的设计经验和丰富的施工经验。完整的设计施工图更加合理,**,逼真,施工质量容易**,几乎没有改动和变化。 ,成本合理,加固效果好。它不仅可以**“临时”,而且可以尽可能地对待“根”。
 
如果只有施工经验,则生成的加固方案和施工图可能缺乏对结构的系统应力分析以及对疾病成因和趋势的分析。通常,加固的零件没有得到足够的加固,或者过多的加固,不需要加固的区域也得到加固,造成更多的后果。花钱后,加固效果不好。许多设计师在加固材料的数量上相对随意。有很多人根据经验和看法使用材料。不管是浪费材料还是没有达到星聚的加固效果,它们对自己都不了解,业主也不知道,而且大多数人都没有做任何事情。对于钢筋计算,一些高素质的设计单位只对钢筋加固前的结构进行一些重新检查,而对于钢筋加固后的承载力多进行计算。但是众所周知,成分的疾病通常表现在正常使用阶段。承载能力主要表明组件是否安全。可以安全使用的组件并非没有疾病。因此,必须计算每种材料在截面上的应力强度以反映部件。是否有疾病,有多少及其发展趋势。
 
“应力强度的计算是反映组件疾病的必要基础,而承载力的计算则是安全使用组件的终**。”两者都是必不可少的。在实际的钢筋计算中,通常似乎承载力的终状态满足要求,但部件中确实存在许多疾病。因此,一种方法是增加车辆的设计负荷,以使承载能力不能满足要求,但是缺乏**的过载数据。另一种方法是根据各种疾病和程度,通过一些算法获得各种折减系数,并对承载力进行折减以表明该组件不满足承载力要求。组件加固后,将补充大于或等于减小的承载能力的承载能力。尽管该方法具有一定的科学依据,但也存在许多人为的判断因素,这些因素也不能反映控制部件上各种物料的工作条件。
 
如何加强不同类型的桥梁?
 
(1)通常在中跨附近从底部到顶部有多个垂直裂缝,静态裂缝的宽度可能超过规格极限值,有时会在中跨出现挠曲,表明抗弯强度不足。
 
(2)一般情况下,平板的底部在中跨附近可能会出现多个纵向裂纹,并且某些静态裂纹的宽度将超过规格要求。这可能是因为设计图采用了预制的标准图钢筋,但在施工过程中使用了它。现浇将单向板转变为一体的双向板,从而改变了板的受力模式,从而导致板底部的横向钢筋严重短缺,并导致底部的纵向裂缝板在横向弯矩作用下的应力。
 
2.混凝土预制组件简支板桥
 
(2)可能还会有支撑空隙。由于每个平板的每个末端都有2个支撑,因此每个桥都有更多支撑。如果在施工过程中支撑垫石的高度不**,或者在安装过程中预制板的翘曲或墩台的不均匀沉降将导致某些支撑物变空;
 
(3)在中跨附近的钢筋混凝土板底部附近,从底部到顶部有垂直裂缝,并且接缝的宽度可能超过规定的要求,或者中跨可能有向下的挠曲,并且耐弯曲性不足。
 
(4)纵向裂纹出现在平板的底部。大多数预应力混凝土制成的简支平板桥都是通过预应力构造的。如果底板由于施工而太薄,则预应力筋周围的混凝土局部应力太大,或者由于氯化物添加剂或混凝土碳化会导致钢筋生锈,从而可能导致沿钢筋混凝土底部的纵向裂缝。钢筋。
 
(5)普通空心板在支撑端附近没有剪切斜裂缝。然而,近年来,一些桥梁采用了宽度为1.5米或更大的大型空心板,这实际上相当于一个小箱形梁。当板的厚度不大时,在侧板的腹板上可能会发现倾斜的裂缝。
 
可选的加固方法是:
 
(1)对于在板底部产生的纵向和横向裂纹,当裂纹的宽度超过规格限制时,可以通过粘贴钢板法或粘贴纤维复合材料法进行加固。但是它不能**解决跨跨挠度问题。
 
(2)预应力加固方法,将多条平行的预应力细钢丝锚定在板的底部,然后在张紧后用特殊混凝土覆盖(将多条预应力钢丝锚固在板的底部),或设置转向支架和然后将折线形的钢束拉紧拉力,将预应力钢缆通过两个端板的斜孔锚固在铺装层下(外部预应力钢缆以虚线布置)。
 
(3)更改结构系统方法,例如将简单支撑的平板更改为连续平板,对于小跨度的平板桥梁,可以在跨度的中间或附近添加桥墩或斜撑。请注意,在中间支点的负弯矩区域中,应结合桥面板的重建添加足够的抗拉钢筋。以上两种方法对解决中跨挠度有较好的效果。
 
(4)锚定喷射混凝土加固方法,将钢网锚定在板的底部,然后喷射混凝土覆盖。本质上是要在板的底部增加钢筋,这类似于“在板的底部锚定多条预应力钢丝”的示意图,不同之处在于在板的底部添加了普通钢网。
 
(5)只能通过对桥面的改造,如增加桥面横筋的布置,增厚铺路层等,才能解决桥面铰接处的纵向裂缝。
 
(6)平板桥架的空位现象可以通过更换,增加钢背板,楔紧等方法解决。
 
钢筋混凝土和预应力混凝土连续平板桥
 
钢筋混凝土和预应力混凝土连续平板桥通常采用实心平板或空心平板截面,并且大多数为现浇结构。跨度小于20米。预应力混凝土连续板跨度较大。通常,采用后张法。那些高度相等,而高度可变。立交桥和人行天桥在城市桥梁中有更多的应用。钢筋混凝土连续板有更多的应用。
 
常见问题:
 
(1)在钢筋混凝土连续平板桥的每个跨度的中间附近,平板底部附近从底部到顶部有多个垂直裂缝,这些裂缝可能会在横向方向上渗透,这是弯曲裂缝,表明抗弯强度不足;
 
(2)钢筋混凝土连续平板桥各墩顶部的桥面开裂,桥下的渗水一般水平渗透。如图所示,可能存在一个或多个裂纹,这可能是由于活荷载或桥墩沉降不均匀引起的,这表明负弯矩很大,并且支点截面的抗弯能力不足。
 
(3)纵向裂缝出现在每个跨度中间附近的平板底部,类似于“整体式平板桥中跨的平板底部纵向裂缝”。钢筋混凝土楼板的底部没有足够的横向钢筋,或者混凝土盖太薄且受到预应力。钢筋周围的混凝土局部应力太大,或者混凝土中的添加剂导致钢筋生锈,在钢筋上引起裂纹;
 
(4)中跨挠度要么是施加的预应力不足,要么是中跨钢筋混凝土板底部的竖向裂缝过多且太宽,导致刚度降低和挠度增大。
 
可选的加固方法是:
 
(3)预应力加固方法,将转向支架放在板的底部,并根据折叠的线形束将其拉伸。这种方法有益于用力造成的各种疾病。
 
(4)改变结构体系方法,例如在跨度中间或附近增加斜支撑,以解决跨度中间过度向下挠曲或预应力不足的问题,类似于下图,但拉力为支撑部分的负弯矩区域应增强钢筋。
 
4.钢筋混凝土和预应力混凝土连续平板桥
 
钢筋混凝土和预应力混凝土简支梁是所有操作中桥数量多的梁桥,其横截面形式通常包括T形,I形,箱形以及各种形式的组合。钢筋混凝土简支梁的跨度通常为10至20米,而预应力混凝土简支梁的跨度通常为16至50米,其中少数是较大的。大多数施工方法采用预制装配,少数采用现浇施工。由于具有肋形横截面,因此自重更轻,弯曲能力和跨度比平板桥大,并且疾病种类更多。
 
1)钢筋混凝土简支梁桥
 
(1)中跨附近梁底部的垂直弯曲裂纹的数量随跨度的增加而增加。静载荷裂纹的宽度可能会超过指定的极限值,并且某些裂纹会在中跨度中产生过大的下偏角;
 
(2)靠近两个支撑端的腹板上的倾斜裂纹是由于主拉伸应力过大或腹板抗剪强度不足而引起的剪切病,如图所示:
 
(3)梁腹板上的垂直裂缝大部分位于薄腹板的中间。中间两端宽而细。它们不会向上或向下延伸。大部分混凝土维护不善,或者腹板上的温度或水平肋骨太少。其他原因引起的收缩裂纹主要影响结构的耐久性;
 
(4)在预制T型梁桥的法兰铰接或横向损坏的预制T型梁桥中,桥面板上沿翼缘板连接处的纵向裂缝更为常见。这种疾病会引起恶性循环,加重单束其他疾病的程度。
 
(5)由于其他施工原因引起的裂缝,这些裂缝可以在项目完成前发现。
 
如果是根据B型预应力混凝土构件的一部分设计的简支梁,则可能存在钢筋混凝土简支梁的某些病害,但程度不同,因此不再赘述。但是它也有一些常见的疾病,即**预应力混凝土简支梁。对于**预应力和部分预应力的A类混凝土构件,在正常使用条件下不允许出现裂缝。如果发生这种情况,无论关节的宽度如何,都应找到原因进行治疗或加强。
 
预应力混凝土简支梁不同于钢筋混凝土简支梁的其他常见疾病:
 
(1)可以通过粘贴钢板和粘贴纤维复合材料,或者通过增加截面方法来增加铺路层的厚度并增加厚度,来增强梁底部的弯曲裂纹和沿预应力筋的纵向裂纹。该部分的压缩区域。该区域有利于增加弯曲强度和刚度,但是高度的增加受到限制,同时自重也增加了。如果梁底部的高度增加,则加固实际上会增加;
 
(2)对于腹板上的倾斜裂纹,可将钢板或纤维复合材料粘贴在与裂纹相反的方向上,并与水平线成大约45°角,即与倾斜裂纹大致正交的方向。光束高度低,并且将钢板或纤维锚固。当长度不足时,可以以U形箍和压条的形式粘贴。
 
(3)对于腹板上的收缩裂缝和锚固区域的裂缝,根据接缝的宽度,使用环氧胶堵住或填充接缝;
 
(5)对于因力引起的上述各种疾病,可以采用外部预应力加强方法。有许多特定的方法。该方法的设计和构造复杂,但效果较好。
 
(6)对于病多,重的单根梁,在条件允许的情况下,可通过剪断横梁来代替刚度更高的新梁,同时减少其他梁的载荷分布。如图所示,在大多数情况下,边缘光束严重病变。
 
5.钢筋混凝土和预应力混凝土连续梁和悬臂梁桥
 
连续梁桥和悬臂梁桥的横截面通常为T形,I形和箱形。 30米以上的大多数跨度是箱形的,并且使用了可变高度的不等跨度的梁。通常使用等高钢筋混凝土连续梁。跨度小于30米的钢筋混凝土连续梁或悬臂梁的跨度通常小于50米。这种使用大跨度钢筋混凝土材料的桥梁价格昂贵,桥面的负弯矩区域也很容易。出现横向裂缝。高度恒定的预应力混凝土连续梁的跨度通常在60米以下,而高度可变的预应力混凝土悬臂梁通常在100米以下,但100米以上是常见的,连续梁通常在200米以下。 ,但200多米也很常见。这种类型的桥梁通常用于穿越障碍物或城市立交桥,并且无论跨度大小如何,都容易出现各种疾病。
 
常见的问题是:
 
(1)悬臂梁牛腿的挠度太大,墩顶的桥面板经常开裂。主要是由于悬臂刚度不足,体积小,车辆超重的影响,纵向预应力损失大,施工质量差等原因造成的;
 
(2)如下图所示,悬臂梁的局部裂缝主要是由于钢筋不足,高度低,温度影响或悬梁与梁之间的连接不良所致,导致汽车跳动和局部过大。影响;
 
(3)如果悬臂梁的锚孔跨度太大,则当其尺寸太小或钢筋不足时,很可能在翼展的底部出现中跨挠度或垂直裂缝。中跨梁
 
(4)将预应力筋锚固到齿形板上后出现倾斜裂纹。对于所有预应力箱形梁,这都是一种可能的疾病。如下图所示,主要原因是齿板附近的应力集中太大,普通钢筋的构形太小,预应力钢绞线被锚固。集中过多引起的。
 
(5)箱形梁顶部和底部的纵向裂缝,如下图所示,主要是由于顶板和底板的横向弯曲力矩过大,无横向预应力,箱形梁横向弯曲的空间效应所致;板厚薄,横向钢筋不足,箱形梁的内外。温差过大会引起温度应力等原因;
 
(6)箱形梁顶部和底部的纵向裂缝。在箱形梁的顶部和底部,大量的预应力纵向钢绞线穿过,局部应力过大,或者认为箱形梁的正剪力滞后效应还不够。或者是由于偏心荷载作用下箱形梁的变形和扭转而引起的腹板下端过大的局部应力所致;
 
(7)箱形梁腹板中间的垂直裂缝通常在脱模后的2至3天内发生,并且不会向上和向下延伸。预应力后,大多数将关闭。这主要是由于混凝土的收缩或箱形梁的内外之间的温度差或腹板的水平加强。不足或与混凝土混合物的质量有关;
 
(8)箱梁腹板上的斜裂缝如下图所示,通常出现在桥墩支点与倒置点之间的梁段中。这是一个剪切裂缝,其原因更加复杂,主要是纵向或垂直预应力。损失不足或过多,箱梁内部和外部之间的温差过大,箱梁的弯曲或扭转刚度不足,在偏心载荷下箱梁的变形应力过大,腹板厚度小,剪切滞后效应的影响,无-预应力钢筋配置不足,混凝土混合物和添加剂的影响,施工不当,纵向预应力梁的线性布置以及跨距布置不合理。
 
(9)箱形梁腹板上的水平裂缝,如下图所示,主要是由于箱形梁横向弯曲的空间效应和内外温差应力所致,从而在箱梁上产生较大的竖向应力。腹板的内部或外部,箱形梁的横向刚度不足以及变形应力。 ,是由于垂直预应力不足等原因引起的。
 
(10)在悬臂施工过程中,每个节段的连接处或封闭截面的连接处都有裂缝,这主要是由于施工缝的处理不善造成的,这些连接处变成薄弱的部分,在纵向弯矩,混凝土收缩或收缩的作用下开裂。温差应力大,或由于预制接头不致密。桥面开裂后,接缝会渗水,钢材也会被腐蚀。
 
(11)当箱形梁较宽时,横向隔板或横梁中可能会出现垂直裂缝,如下图所示。这主要是因为施加在横隔板或横梁上的横向预应力不足或损失太大,或者是由于梁的抗扭性差而引起的箱形。
 
2)钢筋混凝土和预应力混凝土连续梁
 
中跨向下过度弯曲通常伴随着中跨梁底部的横向裂缝,桥墩顶部的桥面板上的裂缝或倾斜的腹板裂缝。主要原因是弯曲刚度不足,例如梁高低,腹板薄和纵向预应力。由压力不足或过度损失引起。
 
其他疾病与钢筋混凝土和预应力混凝土悬臂梁相同。上述疾病的可选增强方法是:
 
(1)对于悬臂梁的牛腿端的偏斜,**的方法是增加预应力。利用可变高度梁的特性,将全长无粘结预应力电缆布置在路面层中,并锚定到牛腿上。如图1所示,应通过植入大量的锚杆,在桥面的预应力在人行道层和箱梁的顶部平板之间转移,如图1所示。当一个具有多个腔室且箱体高度足够的单个箱体的横截面时,全长的外部主体可以布置在中间腹板顶部的两侧。束固定在腹板上,如下图2所示,但要注意对锚固孔的影响。
 
(2)为防止托梁出现裂缝,通常在两侧粘贴块状钢板或钢带,如图3所示。如果盒内的托梁可以由人操作,请考虑从外部钻一个斜孔,然后如图4所示,通过预应力筋将其张紧并锚固。
 
(3)对于连续梁中跨和悬臂梁锚固孔,底部挠度太大。**的方法是外部预应力加固。利用可变高度梁的特性,线形或虚线形的主体被布置在盒子中的腹板的两侧。如图1和图2所示,外部预应力梁得到了加固,同等高度的连续梁应通过折线布梁进行加固,如图3所示。
 
(4)预应力锚固齿板附近的裂缝一般在填充接头后用薄钢板或碳纤维等复合材料加固;
 
(5)对于墩顶顶部桥面的横向裂缝,可以去除路面层的混凝土,并可以在平板顶部表面添加普通的抗拉钢筋或未粘结的预应力筋。如图1所示,将预应力钢绞线锚固在现浇层中。或在盒子中腹板两侧的重心轴横截面上方设置外部预应力电缆加强筋,如图2所示。 。
 
(6)对于连续梁底部的横向裂缝或分段节理处的横向裂缝,常采用纵向粘结钢板或碳纤维等复合材料加固;或使用外部预应力电缆进行加固。对于分段节中的裂缝,如果是非应力引起的,则只需用胶水填充即可;
 
(7)对于箱形梁顶部和底部的纵向裂缝,通常采用横向粘贴钢板或其他纤维复合材料或增加横向连接的方法来对其进行加固。如果顶板的底面纵向开裂,则主要是由于顶板的水平跨度太大而未设置横向预应力所致。您可以考虑在顶部平板上方的路面层上添加横向预应力筋,如下图所示,然后连接路面层和屋顶板。在它们之间植入了大量的锚杆,以传递桥面板的预应力。
 
(8)对于箱形梁顶部和底部的纵向裂缝和腹板的竖向裂缝,可通过密封,灌浆或粘贴纤维复合材料进行加固;
 
(9)对于腹板上的倾斜裂缝,可以将钢板或纤维复合材料粘贴到腹板上,类似于下图。或适当增加腹板的厚度,或纵向或垂直施加预应力以加强腹板;
 
(10)对于腹板上的水平裂缝,可在腹板上粘贴垂直钢板或纤维复合材料,或增加水平连接,例如增加横向隔板或施加垂直预应力加强;
 
(11)对于箱形横梁中横隔板或横梁的竖向裂缝,可以在横隔板的两侧施加横向外部预应力,并通过箱壁锚固,如下图所示。或添加横向挡板以增强抵抗横向弯曲和扭曲的能力。
 
6.预应力混凝土T形刚性框架桥
 
T形刚性框架桥包括具有悬挂梁或铰链的T形刚性框架以及连续的刚性框架。其主要特征是梁和墩固结在一起,但前者的上部结构类似于悬臂梁桥,后者的上部结构类似于连续梁桥,不同之处在于墩必须承受较大的荷载。纵向弯矩。当然,仍然存在力的差异,并且跨度也增加了很多。连续的刚性框架(如双薄壁墩)已达到约300米。预应力T形刚性框架桥,无论是带有吊梁的T形刚性框架,还是连续的刚性框架,通常使用高度可变的箱形梁,预应力悬臂梁和连续梁桥。他们也可能有问题。 ,可选的加固方法也相同。
 
区别在于带有悬挂梁的T形刚性框架具有较长的悬臂。如果施工或设计质量不佳,尤其是施工质量较差,将导致很大的预应力损失和悬臂的抗弯刚度不足。牛腿很容易出现。过度偏斜和其他疾病。当使用外部预应力电缆进行加固时,可以将未粘结的钢绞线布置在箱形梁顶面上的路面层中,并固定在两端的牛腿上。在新旧混凝土之间植入了大量的锚杆,以转移桥面。压力,如图所示:
 
当箱形梁是具有多个腔室的单个箱形梁时,可以在中间腹板的两侧布置全长的外部预应力电缆以进行加固,然后在墩顶上钻穿两个横向隔板,然后将其锚固到腹板两侧的锚固座上方,如图所示:
 
7.钢筋混凝土平板拱,肋拱和箱形拱桥
 
所谓的平板拱,肋拱和箱形拱主要是根据主拱环的截面形式来划分的,这里主要是指甲板拱桥,其跨度可以小也可以大,小则大于10米,大的可以达到箱形肋拱。它长420米,具有各种结构和样式,但许多疾病大致相同。
 
常见的问题是:
 
(1)主弓环的下边缘和侧面的横向裂纹以及弓形脚的上边缘和侧面的横向裂纹,如下图所示。这主要是由于这两个部分的抗弯强度不足。原因有很多,例如尺寸小,加固不充分,拱轴不合理,桥墩沉降不均匀或向路堤滑动或旋转,车辆超重的影响,完整性差和施工质量差所致。如果裂纹的上下边缘的位置与上述相反,则通常是墩沿桥孔的方向滑动或旋转。
 
(2)在主弓形环(平板弓形环)或腹弓形环中出现纵向裂纹,如下图所示。它通常伴随着墩,平台帽或帽梁的纵向裂缝。如果裂缝大致位于中间,则可能是桥墩和平台基础的上,下游沉降不均匀造成的。如果仅仅是侧拱盒的接缝处的裂缝,那么接缝通常是不连接的。良好,完整性差,这是由于偏心载荷下侧拱盒的更大力和变形所致;
 
(3)混凝土的碎裂和脱落发生在主拱环的局部,通常发生在具有高压缩应力的地方,例如拐角,等截面拱形拱的拱脚附近等。抗压强度材料不足,导致分裂或压碎,或内部钢筋生锈和膨胀;
 
(4)主拱圈拱趾处的径向裂纹主要是由于材料的抗剪强度不足引起的;
 
(5)双曲拱桥的拱形波峰上出现纵向裂纹,或在拱肋和拱波的连接处出现圆形裂纹,这主要是由于肋骨之间的横向连接薄弱,完整性差,截面组合不合理以及不均匀造成的。墩台的横向沉降等等
 
(6)拱的弯曲的框架,梁和柱破裂,特别是短柱的短端被破裂和压碎,墩,基台或实心腹板截面的腹弓环的拱脚和拱顶穿过侧壁到桥面板的裂缝,以及侧壁。侧壁与拱形环之间的连接以及侧壁中的其他裂缝如下图所示。主要原因是短柱和腹弓环上没有铰链,相应位置的侧壁和桥面板上没有变形缝,主弓环变形或墩台位移and abutment pull and crack;
 
(7) Longitudinal cracks on the bridge deck are often accompanied by vertical cracks in the transverse connection, especially the severe cracks in the mid-span transverse connection, indicating that the horizontal integrity of the bridge is poor and the lateral load distribution is not good;
 
(8) When the main arch ring is assembled by segmented prefabrication, cracks may also appear at the joints;
 
(9) When steel tube concrete is used for arch ribs, there may be shrinkage folds on the surface of the steel tube, or there may be cavities and segregation in the tube. The thickness of the steel tube is often insufficient, the hoop effect is partially lost, and the steel tube lattice structure is unreasonably arranged, and the tube wall stiffening ribs Insufficiency and so on.
 
The optional reinforcement methods are:
 
(1) Because the main arch ring is an eccentric compression member, if the dome or arch foot transversely cracks or is partially crushed, it is best to use the method of increasing the section from the soffit surface or the back of the arch to reinforce it, such as chiseling the original concrete surface, Concrete or sprayed concrete is poured after planting and laying of reinforcements, especially for cracks at the arch foot, it is necessary to implant steel bars in the pier cap, and then increase the cross section of the arch foot, as shown in the following figure:
 
Secondly, it can be pasted with steel plate or fiber composite material, but it should be noted that the soffit pasting material is too long, and the problem of radial tearing after bending. In the medium and small span arch bridges, external prestressed reinforcement can also be considered, but the impact on other parts should be considered. It is also possible to reduce the self-weight of the building on the arch, such as replacing the filler, or digging out the filler and changing the side wall to a full open-web beam web hole to reduce the burden on the main arch ring, as shown in the figure below, but the main arch axis shape is somewhat different Change, pay attention to checking calculations. If the disease is caused by the displacement of the pier and abutment is still developing, the pier and abutment should be strengthened first to eliminate the cause of the disease.
 
(2) For the longitudinal cracks in the main arch ring or abdominal arch ring, the longitudinal cracks of the pier and platform cap and the vertical cracks of the pier and platform body, if the cracks continue to develop, the foundation and other substructures must be reinforced first. The arch ring cracks should be Depending on the width of the seam, grouting is used to block the cross section, and steel plate or fiber composite material is pasted horizontally. Or add multiple steel hoops, and try to make them into block hoops, or use steel tie rods, apply transverse prestress and other methods to reinforce, as shown in the figure below.
 
(3) For double-curved arch bridges, the longitudinal cracks at the top of the arch or the joint between the arch rib and the arch wave should be strengthened or added to the transverse connection, the arch rib or arch slab section or the number of arch ribs should be increased, and the weight of the building on the arch should be reduced, such as Replace the filler of the belly arch and solid web section, change the horizontal wall type web hole pier to the column type web hole pier, and change the arch type web hole to the beam-slab web hole, etc., as shown in the figure below. If the crack is caused by the uneven lateral settlement of the pier and platform, the foundation should be reinforced first.
 
(4) For the cracks at the upper and lower ends of the low column on the arch, it is best to change the neck hinge to allow it to rotate properly, as shown in the figure below. For the arch toe or vault crack near the pier and the solid web, if the crack is wide enough to break or there is a significant difference in height on both sides, it should be considered to be dismantled and rebuilt into a three-hinged or two-reamed web hole, otherwise Don't care about it for the time being, but the deformation joints of the side walls and bridge decks at the corresponding positions should be set up, otherwise there will be water leakage;
 
(5) For the longitudinal cracks of the bridge deck and the vertical cracks of the transverse connection, the transverse integrity of the structure should be strengthened, such as increasing or adding beams, combined with the refurbishment of the bridge deck, appropriately thickening the thickness of the concrete paving layer, increasing the markings, and strengthening the bridge deck For arch bridges with transverse reinforcement and fillers, the fillers will be excavated and replaced with cast-in-situ concrete for reinforcement;
 
(6) The cracks that are not good at the main arch ring joints can be strengthened by means of grouting, planting bar connection or repair welding connection;
 
(7) For the wrinkles on the surface of the concrete-filled steel tube, it is best to use a layer of reinforced concrete to increase the section, or to densify the slab between the lattice structures, or to increase the tube wall stiffener. For the voids in the pipes, drill holes should be filled with epoxy glue or cement slurry;
 
(8) For arch bridges with excessive deflection of the vault and lateral cracks on the bottom surface, external prestressed cables can be used to set anchors on the arch back below the elastic center of the arch ring to make the vault produce negative bending moments and inverted arches. As shown in the figure below, but the arch foot also produces a negative bending moment, the cross section of the arch foot section should be increased to deal with it. The specific position of the external cable and the tensile force should be tested repeatedly according to the changes in the internal force of the arch ring (mainly bending moment) Confirm after calculation;
 
(9) For rib arches, double-curved arches, etc., due to excessive deformation and cracking of the main arch ring due to the horizontal displacement and subsidence of the arch foot, and the arch axis and the pressure line are seriously deviated, the arch foot can be used when it is difficult to use other reinforcement measures. The method of pushing and restoring to adjust the arch axis improves the force of the arch ring, but this method has complex technology, high risk, and low cost, so it is rarely used.
 
(10) Among the above various reinforcement methods, if the building on the arch is modified or the section of the main arch ring is enlarged, attention should be paid to the balanced symmetry between the single hole and the multi-hole during the unloading and loading process to ensure the arch ring and pier The stability of the station.
 
8. Middle and through arch bridges
 
Middle and through arch bridges are ribbed arches, and the arch ribs are often reinforced concrete rectangular, I-shaped or box-shaped (the latter are more). Steel pipe or concrete-filled steel tube, or their combination is also commonly used. In terms of the force system, there are ordinary arches (that is, thrust arches) and tied arches (ie, no thrust arches). The main components of deck arch bridges are different from suspenders and suspender beams (some also have longitudinal beams). ,Tie. The boom has rigid boom and flexible boom, the latter is more used.
 
Tie rods are also divided into rigidity and flexibility. Mid-bearing (flying swallow) tie-bar arches usually use flexible high-strength steel wires as tie rods. Down-bearing tie-bar arches include flexible tie rod rigid arches, rigid tie rod rigid arches and rigid tie rod arches. The first two are more common in the difference of rod flexible arch. In addition to the diseases similar to deck arch bridges, there may also be the following diseases:
 
(1) The anchor head of the boom is loose, rusted, or the steel wire is corroded or sheared. The anchor head under the bridge deck and the anchor heads at both ends of the short boom are easy to appear;
 
(2) The suspender beam is used as a simply supported beam or a double cantilever simply supported beam. Reinforced concrete or prestressed concrete is commonly used. There may be vertical bending cracks at the bottom of the mid-span beam, and oblique cracks appear on the webs on both sides of the lifting point. In addition, longitudinal cracks may appear on the top surface of the beam at the lifting point, as shown in the figure below. The bridge deck with longitudinal beams between the suspenders and beams may crack near the nodes of the longitudinal and transverse beams and the nodes of the arch ribs and rigid tie rods;
 
(3) Looseness or corrosion of the anchor head of the tie rod, or corrosion or broken wire of the steel wire. Rigid tie rods are similar to elastically supported continuous beams because they have to withstand axial force and local bending moments, and they also have common problems with bending members.
 
The optional reinforcement methods are:
 
(1) If the anchor head of the suspender or tie rod is loose or individual slips, when conditions permit, the anchor head should be tightened to adjust the internal force or elevation of the loose tie rod or suspender. Most of the flexible suspenders use piers. The head anchor can be tightened by adding a steel spacer. If the tie rod uses a clip anchor, the heavy anchor should be supplemented. For booms or tie rods that are severely corroded, broken wires, or unconditionally tensioned and tightened, the cables should be replaced through reserved holes. If there are no reserved holes, other measures should be taken to temporarily unload the replaced booms or tie rods. Change the rope.
 
(2) The various cracks that appear in the boom beams, longitudinal beams or rigid tie rods can be reinforced like the reinforced concrete or prestressed concrete simple beams, continuous beams and cantilever beams in the previous sections of this chapter, such as external prestressing method , Pasting steel plate or fiber composite material method, etc.
 
(3) For the cracks of the longitudinal and transverse beam nodes and the arch foot nodes, the simple method is to paste the block steel plate or fiber composite material, as shown in the figure below.
 
9. Reinforced concrete rigid frame arch bridge
 
Under normal circumstances, the most common diseases of long-span rigid-framed arches are the cracks at the chords and rigid joints. As long as the rigid-framed arch bridges with diseases, most of them have such cracks, but for reinforced concrete members, as long as the crack width does not exceed The allowable value is also a normal use. Although there are many owners who are opposed to building a new rigid-frame arch bridge, through analysis of the causes of its diseases, the problems of its bearing capacity and performance should be treated correctly.
 
Alternative reinforcement methods for rigid frame arch bridges
 
The rigid frame arch bridge is mainly composed of outer chords, inner chords, solid webs, arch legs (main arch legs), diagonal braces (secondary arch legs), transverse connections, bridge decks and bridge deck pavement, as shown in the following figure. The following will discuss each component's disease phenomenon, its causes, and the reinforcement methods currently used one by one.
 
(1) Bridge decks: The decks of rigid frame arch bridges are commonly used in two types: less ribbed haunches or slightly curved plates. A few of them use rectangular solid or hollow slabs. The first two are optimized on the basis of rectangular slabs. The amount of steel and concrete is small and the weight is light. Especially the rib and haunches are hollowed out at the cost of complex construction. The less-reinforced rib axillary plate and micro-bend plate not only have less reinforcement, but also have a small thickness. They will definitely be no problem under short-term design loads. Under the condition of long-term overload, the actual bridge disease shows that the direction of the bottom of the ribbed plate is not correct. Regular cracks, severely exposed ribs and leaking water. If it is a micro-bending plate, the bottom surface of the stiffening rib of the micro-bending plate has a number of vertical cracks extending upward, some of which can extend to the top of the plate, causing the top of the plate to crack longitudinally.
 
The optional reinforcement methods for the above diseases are:
 
For the micro-bent slab with cracked stiffeners, a U-shaped unidirectional carbon fiber sheet with vertical cracks is used. It is more convenient to stick to the bottom of the rib than to stick the steel plate. The longitudinal cracks on the top of the micro-bent slab are filled and sealed depending on the width.
 
In combination with the reconstruction of the bridge deck, the thickness and strength of the cast-in-situ layer are increased, and the reinforcement in the cast-in-situ layer is strengthened to improve the stress condition of the bridge deck.
 
(2) Inner and outer chords and solid webs: chords and solid webs often use rectangular, I-shaped, box-shaped sections, the outer chords are bending members, and the inner chords and solid webs are bent (eccentrically). Compressed) components. Generally, the cracks produced by the arches often appear on the outer chord, followed by the inner chord and the solid web. Vertical cracks in the outer chord and oblique cracks on both sides of the large and small nodes are common, but the degree is different. Of course, if the crack width is within the allowable range, it also meets the design requirements or is not at the point where it must be reinforced. But for rigid frame arch bridges with serious diseases, there are many and wide cracks in the tension zone at the bottom of the mid-span of the outer chord and the solid web, and the inner chord has more cracks, some have penetrated in the horizontal direction, and cracked to the top in the vertical direction, especially the nodes. The diagonal cracks on both sides are wider, and some have penetrated.
 
The optional reinforcement methods are:
 
① For the reinforcement of the bending member of the outer chord of the rigid frame arch, if the chord is not a super-reinforced beam, the U-shaped fiber sheet or the steel plate can be pasted in the tension zone of the bottom surface or the section height and reinforcement can be increased. For super-reinforced beams, it is best to increase the section height and reinforcement, or to paste U-shaped fiber sheets or steel plates in the tension zone on the bottom surface, and increase the thickness of the cast-in-situ layer on the bridge deck.
 
② The inner chord is an eccentric compression member and can be reinforced by the same method as the outer chord.
 
③ The oblique cracks on both sides of the large and small nodes can be reinforced with steel plates or fiber sheets on the crack surfaces to withstand the main tensile stress. Increasing the height of the chord section can also reduce the main tensile stress.
 
④ U-shaped carbon fiber sheet can be pasted on the slightly arc-shaped bottom surface of the solid web in the mid-span to withstand the bending tensile stress and radial tearing force, or the method of increasing the section height and reinforcement can be adopted.
 
⑤ For the cracks in the chord and other parts of the solid abdomen, the cracks can be filled and sealed.
 
(3) Lateral connection: The lateral connection of a rigid frame arch bridge. There is one line between the chords and solid webs about 3 meters, and the nodes are strengthened. On the arch legs and diagonal braces, there are one or more channels according to the size of the span. The situation is relatively intact. However, rigid frame arches with integral damage are quite different. Most of the diaphragms of the solid web and chord sections have vertical cracks that penetrate up and down. The hollowed diaphragms are more serious than the solid diaphragms, especially There are many cracks in the transverse diaphragm of the solid web, and some of them are almost broken into only steel bars. The transverse connections on the arch legs and diagonal braces are generally intact. However, rigid frame arch bridges with gravity piers and abutments have few problems in the lateral connection, indicating that flexible piers should not be used for light arch bridges with low rigidity.
 
The optional reinforcement methods are:
 
①  中断交通施工时,横隔板可采用混凝土加固,即在原横隔板的基础上,通过植筋加厚加高横隔板。
 
不能中断交通施工时,横隔板只有采用施工快速、简便的钢结构加固,如下图。在原混凝土横隔板的四个角,采用粘贴和螺栓固定四根角钢,再用两片钢桁架夹住原混凝土横隔板,施工时作好所有横隔板加固准备工作,并点焊固定位置后,临时中断交通,将各钢构件焊接完成后,再恢复交通。
 
(4)主拱腿及斜撑:主拱腿和斜撑为小偏心受压构件,在恒载及车辆作用下,一般不产生拉应力,其内主要按构造配筋。但有的斜撑底部附近有较多由顶面而下的环形裂缝,有的开裂至截面高度一半左右。采用有限元计算分析可知,使用荷载下,构件不产生拉应力,但在墩、台不均匀沉降时,斜撑底部的负弯矩就非常敏感,较小的不均匀下沉,在此处将产生较大的拉应力。实桥观察也说明斜撑底部有裂缝出现,极可能是墩、台有不均匀沉降。此外,温度下降时也容易产生斜撑底部的负弯矩。
 
可选的加固方法有:
 
对于斜撑根部的裂缝,可采用环形包裹粘贴纤维布,也可采用顶面粘贴钢板或碳纤维条。也可考虑增大截面加固。
 
(5)桥面铺装层:桥面现浇层对采用预制拼装施工的桥面板来说,尤为重要,以其它类型桥梁相比,刚架拱桥的混凝土铺装层是组合断面的一部分,直接参与受力,更重要的是拱片大、小节点负弯矩区的受拉钢筋都布置于现浇铺装层中。如果该位置所承受的拉应力过大,将会导致桥面横向贯通开裂,若桥梁整体性较差,还会引起桥面的拱片位置处纵向贯通开裂,这两类裂缝均属结构受力性裂缝,必须尽快进行加固。其他坑槽、网裂之类均属铺装层本身局部病害。
 
可选的加固方法有:
 
①  凿除桥面铺装,重新浇筑铺装层混凝土,按新规范要求提高混凝土标号,加强桥面钢筋网的配筋。并特别注意钢筋网必须架起来。新浇铺装层的厚度,根据需要决定是否加厚。
 
②  进一步加强负弯矩区的纵向钢筋配置。
 
中等跨径以下的桁架拱一般采用钢筋混凝土,中等跨径以上的桁架拱或桁式组合拱桥一般采用预应力混凝土,它们均为组合体系拱,常采用预制拼装施工。上弦杆及跨中实腹段除承受轴力外,还承受较大弯矩,下弦杆为偏心受压构件,腹杆有斜杆和竖杆,一般采用斜拉杆式腹杆,即斜杆为偏心受拉,竖杆为偏心受压构件。因此跨径大时,需在上弦杆、斜杆及实腹段中施加预应力。
 
常见问题有:
 
(1) 上弦杆及实腹段跨中附近底面及侧面横向开裂,或下挠过大,表明杆件的**预加应力不足,或截面高度偏小,普通钢筋配置不足;
 
(2)斜杆开裂,说明拉力过大,预加应力不足。
 
(3)下弦杆及竖杆沿杆长方向出现多条裂缝或局部压碎,主要是杆件截面尺码偏小。如果出现垂直于杆长方向的裂缝,说明杆件的长细比过大或桁架片变形较大引起较大偏心弯矩所致;
 
(4)各杆件节点附近开裂,由于各杆件轴线一般不会相交于一点,且受其他附加应力影响使节点局部应力过大引起开裂,如图:
 
(5)横向联系(如横隔板、横系梁、剪刀撑等)中部出现竖向裂缝或其它裂缝,主要是桁片横向整体性差,横向联系刚度不足、尺码偏小;
 
(6) 由于桁架拱采用预制拼装施工,接头较多,干接头可能因焊接质量或疲劳问题松脱,湿接头也可能因接头强度不足引起开裂;
 
(7)桁架拱桥的桥面板一般用钢筋混凝土微弯板,钢筋混凝土或预应力混凝土矩形空心板或实心板。桁式组合拱桥的桥面板常用钢筋混凝土单向板或双向板。其病害与上节刚架拱桥类似。
 
可选的加固方法有:
 
(1)对上弦杆、斜杆及实腹段裂缝,如果不太严重可采用粘贴钢板或纤维复合材料方法加固,否则可采用体外预应力加固,或结合增大截面,张拉体外预应力索后用钢筋混凝土包裹;
 
(2)对下弦杆及竖杆的裂缝,采用增大截面法加固,如果裂缝不太严重,可采用加钢板箍或包裹纤维复合材料加固;
 
(3)对节点裂缝,可采用粘贴块状钢板或纤维复合材料加固;
 
(4)对横向联系裂缝,采用加大横向联系截面尺码,或增设横向联系,或施加横向预应力加固。如果开裂程度较轻,可采用局部粘贴钢板或纤维复合材料加固;
 
(5)对各种施工接头的裂缝,可采用补焊、灌缝、植入锚筋、粘贴钢板等方法加强。
 
十一、圬工拱桥
 
(1)拱圈出现大面积的严重风化剥落、灰缝脱空。原因是砌体和砂浆的材料差,或者受到腐蚀性强的水和气体的浸蚀;
 
(2) 主拱圈拱顶下缘出现1~2条横向贯通的裂缝,如果裂缝两侧有明显高差,说明墩台有不均匀下沉,若无明显高差,但拱顶有少量下沉,则可能墩台向桥孔外滑动或转动,或由于拱圈承载力已不足引起,若拱顶上拱且下缘出现横向压碎裂纹,则可能墩台向桥孔内滑动或转动;
 
(3)拱圈的个别拱石出现裂缝,灰缝脱落,压碎或外凸;
 
(4)拱圈分层砌筑时,沿砌缝出现环向裂缝,这主要与施工时的砌筑工序,支架变形、砌缝处理及砂浆强度有关;
 
(5)砌体表层沿砌缝无规则的开裂,主要是砂浆标号低或砂浆不饱满;
 
(7)拱上侧墙沿拱圈的拱背开裂或脱离,主要是墩台下沉,温度变化或车辆作用时主拱圈与拱上建筑变形不协调,或砌缝未处理好引起。
 
其它一些病害与钢筋混凝土上承式拱桥类似。
 
可选的加固方法有:
 
(1)对砌体表层风化剥落、灰缝脱空,可先凿除松动的剥蚀层,露出新鲜面,用高标号水泥砂浆填塞灰缝,视厚度分层涂抹或喷涂水泥砂浆修补,砂浆中可添加一些化学纤维以增强抗裂性;
 
(2)对由于墩台不均匀下沉引起的拱顶横向裂缝,如果下沉还未稳定,应先加固墩台基础,再对裂缝注水泥浆后,在拱腹下植筋,挂钢筋网浇筑或喷射混凝土内衬,增大拱圈截面加固。如果沉降基本终止,就只需加固拱圈,开裂不严重时,也可只灌浆封锁。对由于墩台滑动或转动引起的拱顶裂缝,如果墩台位移尚未停止,应先加固墩台,再对裂缝注浆封锁后,可从拱腹或拱背浇筑钢筋混凝土,增大截面加固。对由于承载能力不足引起的拱顶横向裂缝及下沉,除可采用拱背或拱腹增大截面外,还可同时采用减轻拱上建筑自重来减少恒载,如实腹拱改空腹拱,如下图1
 
将原填料更换为轻质填料,改拱式腹孔为梁板式腹孔或全空腹式拱上建筑。对小跨径拱桥还可在拱顶上浇筑一钢筋混凝土简支板或垫板,如下图2,将原桥改为拱梁组合体系,以减轻主拱圈活载,提高承载力。以上加固中若墩台负担增加较多,应考虑墩台及基础的承载力及稳定是否满足加固需要。
 
(3)拱圈个别拱石出现的病害,可凿除压碎部分,视裂缝宽度大小,用环氧胶、高标号水泥砂浆或环氧砂浆,灌缝或填缝,再用水泥砂浆或小石子混凝土修补。拱石严重碎裂的,要全部凿除用混凝土填补;
 
(4)主拱圈沿砌缝环向开裂时,采用钢板或铸件做成的楔形剪力键或抓钉竖向嵌入拱圈两侧,开裂范围大且严重时在拱圈上径向钻孔穿入长锚栓,适当加压后锚固,其间距布置视环向开裂程度而定,原裂缝用水泥浆灌缝封锁,图3;
 
(5)砌体表层砌缝开裂,可采用水泥砂浆灌缝封锁或勾缝;
 
(6)拱上侧墙外倾,视外倾程度,采用挖出墙内填料更换成砂砾石、浆砌片石等较少侧压力的材料,对空腹式拱桥的腹拱侧墙及实腹段侧墙外倾,由于填料较少,可更换成低标号混凝土。对实腹式拱桥也可采用加厚侧墙尺码,或者在两侧墙钻孔设多根钢拉杆对锚,如下图4。还可改变拱上建筑形式不要侧墙,如实腹式改空腹式等,如上图1;
 
(7)拱上侧墙沿拱背开裂或脱离,如果是基础下沉引起并未终止的,应先加固基础,再用高标号水泥浆或砂浆灌缝封锁。并检查两拱脚上方侧墙上至桥面的伸缩缝是否**,否则可能引起拱上建筑与主拱圈变形不协调。其它病害的加固方法与钢筋混凝土上承式拱桥类似。
 
自密实砂浆,自密实混凝土,路面薄层修补材料,环氧修补砂浆,钢筋防锈剂(渗透型),非收缩自流混凝土,混凝土抗裂压实剂,聚合物改性防​​水涂料,沥青防水涂料,桥梁养护剂,悬索桥结构胶,沥青冷修补材料,路面裂缝修补剂,履带砂浆,轴承灌浆材料,钉锚固剂,重力砂浆,锚固砂浆,压载胶,渗透性结晶防水涂料,超细水泥,地聚合物灌浆材料,清水混凝土保护剂,水利边坡修补砂浆,支座砂浆,风力灌浆材料,C100风力灌浆材料,C110风力灌浆材料,C80风力灌浆材料,C120风力灌浆材料,钢纤维灌浆材料,聚合物防水防腐蚀砂浆,有机高强度耐磨材料里亚尔,混凝土促进剂

在线咨询
服务热线

服务热线

18900792580

微信咨询
长沙星聚建材科技有限公司
返回顶部
X长沙星聚建材科技有限公司

截屏,微信识别二维码

微信号:18974972581

(点击微信号复制,添加好友)

打开微信

微信号已复制,请打开微信添加咨询详情!